Abstract

Amyloid precursor protein (APP) is a member of a gene family that includes two APP-like proteins, APLP1 and 2. Recently, it has been reported that APLP1 and 2 undergo presenilin-dependent gamma-secretase cleavage, as does APP, resulting in the release of an approximately 6 kDa intracellular C-terminal domain (ICD), which can translocate into the nucleus. In this study, we demonstrate that the APLP2-ICDs interact with CP2/LSF/LBP1 (CP2) transcription factor in the nucleus and induce the expression of glycogen synthase kinase 3beta (GSK-3beta), which has broad-ranged substrates such as tau- and beta-catenin. The significance of this finding is substantiated by the in vivo evidence of the increase in the immunoreactivities for the nuclear C-terminal fragments of APLP2, and for GSK-3beta in the AD patients' brain. Taken together, these results suggest that APLP2-ICDs contribute to the AD pathogenesis, by inducing GSK-3beta expression through the interaction with CP2 transcription factor in the nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call