Abstract

Retention of Se in CMT-13 cells increased with an increase in the concentration of selenite in the incubation medium, the duration of exposure, and the density of the culture. The enhanced toxicity of selenite coincided with a proportional increase in Se in both the cytoplasm and nucleus. About 90% of the accumulated Se was isolated with cytoplasmic macromolecules. Increased nuclear Se retention correlated with increased cytoplasmic Se retention. Greater quantities of cytosolic Se-containing proteins (74, 55, 41, 34, and 28 kDa) and a nuclear Se-containing protein (56 kDa) were detected as the quantity of Se within CMT-13 cells increased. These findings suggest that cellular retention and distribution of Se are determinants of the degree of cellular growth inhibition caused by this trace element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.