Abstract

Two polymers chitosan and poly(lactide-co-glycolide) copolymer (PLGA) were investigated to develop nanoparticles (NPs) for delivery of protein drug substance into tumour cells. Cystatin was selected as a model protein drug due to its high potential to inhibit cysteine proteases, known to trigger the invasive process. Ionotropic gelation of chitosan with tripolyposphate and precipitation of PLGA polymer from a double emulsion system by a solvent diffusion process were used to produce 250-300 nm in diameter NPs. The cellular uptake of NPs was tested on a transformed human breast epithelial cell line, MCF-10A neoT, characterized by an increased expression of cysteine proteases and highly invasive cell phenotype. The influence of NPs on cell viability was evaluated by MTT test showing IC50 400 microg/ml for PLGA and 5 mg/ml for chitosan NPs. As determined by fluorescence microscopy chitosan NPs did not enter the cells during 1-hour incubation whereas the same amount of PLGA NPs were in the cells already after 5 min of incubation. Cystatin delivered into MCF-10A neoT cells by PLGA NPs effectively inhibited intracellular proteolytic activity of cathepsin B, as detected by specific fluorogenic substrate Z-Arg2 cresyl violet. On the contrary, free cystatin in solution did not internalise into the cells and inhibit cathepsin B. To conclude, PLGA NPs with cystatin but not chitosan NPs were targeted through endocytosis to the lysosomal compartments that are rich of proteases enzymes. Our results suggest new strategy to inactivate intracellular tumour-associated proteases, and consequently the invasion behaviour of tumour cells, which could contribute to cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call