Abstract
This investigation compared the secretory efficacies of a series of peptides delivered to the cytoplasm of RBL-2H3 mast cells. Mimetic peptides, designed to target intracellular proteins that regulate cell signalling and membrane fusion, were synthesised as transportan 10 (TP10) chimeras for efficient plasma membrane translocation. Exocytosis of beta-hexosaminidase, a secretory lysosomal marker, indicated that peptides presenting sequences derived from protein kinase C (PKC; C1 H-CRRLSVEIWDWDL-NH(2)) and the CB(1) cannabinoid receptor (C3 H-RSKDLRHAFRSMFPSCE-NH(2)) induced beta-hexosaminidase secretion. Other peptide cargoes, including a Rab3A-derived sequence and a homologue of C3, were inactive in similar assays. Translocated C1 also activated phospholipase D (PLD), an enzyme intimately involved in the regulated secretory response of RBL-2H3 cells, but C1-induced secretion was not dependent upon phosphatidate synthesis. Neither down-regulation of Ca(2+)-sensitive isoforms of PKC nor the application of a selective PKC inhibitor attenuated the secretory efficacy of C1. These observations indicate that the molecular target of C1 is a protein involved in the regulated secretory pathway that is upstream of PLD but is not a PKC isoform. This study also confirmed that TP10 is a relatively inert cell-penetrating vector and is, therefore, widely suitable for studies in cells that are sensitive to peptidyl secretagogues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.