Abstract

Protein transduction domains (PTDs), such as the TAT peptide derived from HIV Tat protein, may transduce macromolecules into cells. In the present study, the TAT peptide-fused artificial transcription factors (ATFs) were generated by fusion of the N-terminal TAT peptide with SV40 promoter-targeted three-fingered C2H2 zinc finger proteins and the KRAB transcriptional repression domain. The fusion proteins were then expressed in an E .coli system and purified by Ni–NTA affinity chromatography. The purified fusion proteins were tested on mammalian cell lines CHO DG44 and L929. TAT-ATF-S, which contains the zinc fingers that bind to the SV40 promoter with high specificity, exhibited the desired transcriptional repression activity to the reported genes, indicating the successful cellular delivery and desired conformation of TAT-ATF-S. Our study has provided a new strategy for intracellular ATF delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call