Abstract

We have prepared polymeric micelle-encapsulating quantum dots (QDots) for delivering the optically activatable protein Killer Red (KR) as a plasmid to cancer cells. QDots absorb light at a lower wavelength and emit light at a higher wavelength in the cell cytoplasm, activating the expressed KR. Once activated, KR triggers the generation of reactive oxygen species (ROS). We prepared cadmium selenide (CdSe)/zinc sulphide (ZnS) QDots and evaluated their optical properties. Subsequently, we performed morphology studies, elemental analysis, thermogravimetric analysis (TGA), and measurements of particle size and surface charge of prepared QDots encapsulated in PHEA-g-PEG-bPEI (PPP-QDot). Cellular uptake of PPP-QDot and PPP-QDot/KR nanoparticles was confirmed using confocal microscopy, and the cellular toxicity and transfection efficiency associated with uptake of PPP-QDot/KR nanoparticles were analyzed. KR expression in normal cells and cancer cells was confirmed using confocal microscopy and Western blotting. Cellular morphologies before and after intracellular activation of KR were observed using phase contrast, fluorescence, and confocal microscopy. Cell fate after exposure to blue light-emitting diode lighting was determined using apoptosis staining and a cell proliferation assay, confirming a suppression in proliferation and a reduction in metabolic activity. We determined that ROS generation contributed to cellular damage after treatment with PPP-QDot/KR nanoparticles and blue light exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call