Abstract

Gap junctions are intercellular channels composed of subunit protein connexin and subserve electrotonic transmission between connected neurons. Retinal amacrine cells, as well as horizontal cells of the same class, are homologously connected by gap junctions. The gap junctions between these neurons extend their receptive fields, and may increase the inhibitory postsynaptic effects in the retina. In the present study, we investigated whether gap junctions between the neurons are modulated by internal messengers. The permeability of gap junctions was examined by the diffusion of intracellularly injected biotinylated tracers, biocytin or Neurobiotin, into neighboring cells since gap junctions are permeable to these molecules freely. 4% Lucifer Yellow and 6% biocytin or Neurobiotin were injected intracellularly into horizontal cells and amacrine cells in isolated retinas of carp and goldfish and Japanese dace following electrophysiological identification. In the control condition, the tracer spread into many neighboring cells from the recorded cells. Superfusion of retinas with dopamine (100 microM) suppressed diffusion of the tracer into the neighboring horizontal cells, but not in the case of amacrine cells. Intracellular injection of cyclic AMP (300 mM) completely blocked diffusion of the tracer into neighboring horizontal cells and amacrine cells. However, superfusion of retinas with 8-bromo-cyclic AMP (2 mM), membrane permeable cyclic AMP analog, permitted the tracer to diffuse into the neighboring horizontal cells or amacrine cells. Intracellular injection of cyclic GMP (300 mM) blocked the diffusion between neighboring horizontal cells, but did not suppress the diffusion between amacrine cells. These results show that the permeability of gap junctions between amacrine cells is regulated by high concentration of intracellular cyclic AMP level, but not for intracellular cyclic GMP or applied dopamine or extracellularly applied low concentrations of intracellular cyclic AMP level. The present study suggests that these laterally oriented inhibitory interneurons, horizontal cells and amacrine cells, express different connexins which may be differentially regulated by intercellular messengers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call