Abstract

Copper Zinc Superoxide dismutase (CuZnSOD) is the family of most important antioxidant metalloenzymes that protects tissues from damage by reactive oxygen species (ROS). In the present study, the intracellular copper zinc SOD from the Asian seabass Lates calcarifer (Lc-icCuZnSOD) was identified by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) technique. The full-length cDNA of Lc-icCuZnSOD consisted of 809 nucleotides with an open-reading frame of 465bp encoding 154 amino acids and N-Glycosylation site (NVTA) within. The predicted molecular mass of the protein is 15.84kDa with an estimated pI of 5.52. The deduced amino acid sequence of Lc-icCuZnSOD shared high degree of homology with known CuZnSODs from other species. CuZn binding sites (H47, H49, H64, and H121 for Cu2+ and H72, H81, and ASP84 for Zn2+), two cysteine residues (aa 58 and 147) that form a disulfide bond, and CuZnSOD family signature sequences (GFHVHAFGDNT, aa 45–55 and GNAGGRLACGVI, aa 139–150) were highly conserved among fish species. Temporal and tissue specific expression of Lc-icCuZnSOD was significantly differentially altered in Asian seabass challenged with Vibrio anguillarum indicating possible role in antioxidant activities involved in the innate immune defense mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.