Abstract
Type 5 phosphodiesterase (PDE5) inhibitors (PDE5i) lead to intracellular cyclic-guanosine monophosphate (cGMP) increase and are used for clinical treatment of erectile dysfunction. Studies found that cGMP may up/downregulate the growth of certain endocrine tumor cells, suggesting that PDE5i could impact cancer risk. We evaluated if PDE5i may modulate thyroid cancer cell growth in vitro. We used malignant (K1) and benign (Nthy-ori 3-1) thyroid cell lines, as well as the COS7 cells as a reference model. Cells were treated 0-24 h with the PDE5i vardenafil or the cGMP analog 8-br-cGMP (nM-μM range). cGMP levels and caspase 3 cleavage were evaluated by BRET, in cGMP or caspase 3 biosensor-expressing cells. Phosphorylation of the proliferation-associated extracellularly-regulated kinases 1 and 2 (ERK1/2) was evaluated by Western blotting, while nuclear fragmentation by DAPI staining. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Both vardenafil and 8-br-cGMP effectively induced dose-dependent cGMP BRET signals (p≤0.05) in all the cell lines. However, no differences in caspase 3 activation occurred comparing PDE5i-treated vs untreated cells, at all concentrations and time-points tested (p>0.05). These results match those obtained upon cell treatment with 8-br-cGMP, which failed in inducing caspase 3 cleavage in all the cell lines (p>0.05). Moreover, they reflect the lack of nuclear fragmentation. Interestingly, the modulation of intracellular cGMP levels with vardenafil or the analog did not impact cell viability of both malignant and benign thyroid tumor cell lines, nor the phosphorylation of ERK1/2 (p>0.05). This study demonstrates that increased cGMP levels are not linked to cell viability or death in K1 and Nthy-ori 3-1 cell lines, suggesting that PDE5i do not impact the growth of thyroid cancer cells. Since different results were previously published, further investigations are recommended to clarify the impact of PDE5i on thyroid cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.