Abstract
Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.