Abstract
The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of neuropathology and experimental neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.