Abstract

Detailed insights into the complex cellular behavior at the biomaterial interface are crucial for the improvement of implant surfaces with respect to their acceptance and integration. The cells perceive microtopographical features and, in consequence, rearrange their adhesion structures like the actin cytoskeleton and adaptor proteins. But little is known about whether these altered cellular phenotypes have consequences for intracellular calcium signaling and its dynamics. To elucidate if an artificial, geometrical microtopography influences calcium ion (Ca2+) mobilization in osteoblasts, human MG-63 cells were stained with the calcium dye Fluo 3-acetoxymethyl ester and set on defined silicon–titanium (Ti) arrays with regular pillar structures (P5, 5 × 5 × 5 μm) and compared with planar Ti. To induce an immediate calcium signal, cells were stimulated with adenosine 5′-triphosphate (ATP). Interestingly, osteoblasts on micropillars expressing a shortened actin cytoskeleton were hampered in their calcium mobilization potential in signal height as well duration. Even the basal level of the intracellular Ca2+ concentration was reduced, which was accompanied by a disturbed fibronectin synthesis. The expression of the voltage-sensitive calcium channels Cav1.2, Cav1.3 (L-type) and Cav3.1, Cav3.2, Cav3.3 (T-type) as well as the signaling proteins phospho-AKT and phospho-GSK3α/β remained unaffected on pillars. The topography-dependent calcium dynamics observed here provide new insights into how topographical cues alter cell functions – via the intracellular Ca2+ signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.