Abstract

The study investigated the effects of adipose tissue-derived stem cells (ADSCs) modified with penile neuronal nitric oxide synthase (PnNOS) gene on intracellular calcium concentration in rat corpus cavernosum smooth muscle cells (CCSMCs). ADSCs and CCSMCs of Sprague-Dawley (SD) rats were isolated and cultured in vitro respectively. The rat PnNOS gene was transferred into the ADSCs mediated by a recombinant adenovirus vector. The expression of the PnNOS gene was detected. At the same time, the concentration of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) was assayed. After coculturing with the CCSMCs of SD rats, which were isolated and expanded ex vivo, the cGMP and NO levels of ADSCs and CCSMCs were measured. Intracellular calcium concentration ([Ca(2+) ]i ) in rat CCSMCs was measured with Fluo-3/AM by flow cytometer after cocultured with ADSCs overexpressing PnNOS gene. The mRNA and protein expression of PnNOS gene mediated by recombinant adenovirus vector significantly overexpressed and lasted at least 2 weeks. Meanwhile, the concentration of NO and cGMP in ADSCs was greatly increased. The concentration of cGMP was significantly increased, and [Ca(2+) ]i was obviously decreased in CCSMCs compared with the control groups (P < 0.05) after cocultured with ADSCs for 3 days. These findings demonstrated that ADSCs overexpressing PnNOS gene might decrease [Ca(2+) ]i in CCSMCs by up-regulating NO-cGMP signalling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.