Abstract

Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca2+ channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca2+ remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca2+] in response to angiotensin II, residual voltage-operated Ca2+ entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca2+ entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca2+ response to angiotensin II, increased Ca2+ store content, enhanced voltage-operated Ca2+ entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca2+ entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca2+ channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca2+ channels involved in proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.