Abstract

Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are “farmers” that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.

Highlights

  • Symbiotic interactions can alter the fitness and evolutionary trajectory of both partners [1,2,3,4]

  • We began with three Burkholderia strains: Ba.70, Bh.11, and Bb.859, each representing one D. discoideum symbiont species B. agricolaris, B. hayleyella, and B. bonniea (Supplementary Fig. 1) [36]

  • Secondary bacteria consisted of a Klebsiella pneumoniae strain, soil isolated Rhizobium and Serratia, and lab Agrobacterium tumefaciens and Pseudomonas aeruginosa strains

Read more

Summary

Introduction

Symbiotic interactions can alter the fitness and evolutionary trajectory of both partners [1,2,3,4]. Light mediates pathogenicity of a fungal plant endosymbiont [10], temperature affects reproductive fitness of aphids hosting Buchnera [11], and parasitoid pressure determines whether Hamiltonella defensa is beneficial to host aphids [12]. These examples demonstrate that even canonically beneficial or detrimental associations may produce alternative effects in alternative contexts [4, 13,14,15,16,17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call