Abstract

Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism.

Highlights

  • Vitamin C promotes endothelial barrier stability during inflammation

  • Preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase

  • We found that intracellular ascorbate at what are likely physiologic intracellular concentrations prevented thrombin-induced increases in endothelial barrier permeability by preserving both cAMP and cortical actin in an nitric oxide (NO)-dependent manner

Read more

Summary

Introduction

Vitamin C (ascorbate) promotes endothelial barrier stability during inflammation. Results: Ascorbate prevents inflammatory decreases in cAMP. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. Ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, preserving stable adherens junctions between adjacent cells. Preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.