Abstract
The present study tested the hypothesis that intracellular ANG II directly induces transcriptional effects by stimulating AT(1a) receptors in the nucleus of rat renal cortical cells. Intact nuclei were freshly isolated from the rat renal cortex, and transcriptional responses to ANG II were studied using in vitro RNA transcription assays and semiquantitative RT-PCR. High-power phase-contrast micrographs showed that isolated nuclei were encircled by an intact nuclear envelope and stained strongly by the DNA marker 4',6-diamidino-2-phenylindole, but not by the membrane or endosomal markers. Fluorescein isothiocyanate-labeled ANG II and [(125)I]Val(5)-ANG II binding confirmed the presence of ANG II receptors in the nuclei with a predominance of AT(1) receptors. RT-PCR showed that AT(1a) mRNA expression was threefold greater than AT(1b) receptor mRNAs in these nuclei. In freshly isolated nuclei, ANG II increased in vitro [alpha-(32)P]CTP incorporation in a concentration-dependent manner, and the effect was confirmed by autoradiography and RNA electrophoresis. ANG II markedly increased in vitro transcription of mRNAs for transforming growth factor-beta1 by 143% (P < 0.01), macrophage chemoattractant protein-1 by 89% (P < 0.01), and the sodium and hydrogen exchanger-3 by 110% (P < 0.01). These transcriptional effects of ANG II on the nuclei were completely blocked by the AT(1) receptor antagonist losartan (P < 0.01). By contrast, ANG II had no effects on transcription of angiotensinogen and glyceraldehyde-3-phosphate dehydrogenase mRNAs. Because these transcriptional effects of ANG II in isolated nuclei were induced by ANG II in the absence of cell surface receptor-mediated signaling and completely blocked by losartan, we concluded that ANG II may directly stimulate nuclear AT(1a) receptors to induce transcriptional responses that are associated with tubular epithelial sodium transport, cellular growth and hypertrophy, and proinflammatory cytokines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.