Abstract

Iodination and hormone synthesis has been studied in isolated hog thyroid cells in suspension. We characterized three iodination processes by use of pharmacological agents. (1) Intracellular iodination dependent on active iodide transport, which was inhibited by NaClO4 or ouabain, but not by catalase. This iodination was linear for 6h with no apparent Km for iodide of 1.5 muM, was stimulated by thyrotropin or N6O2'-dibutyryladenosine 3':5'-cyclic monophosphate, yielded mostly iodinated thyroglobulin and was efficient for tetraiodothyronine synthesis. (2) Extracellular iodination, which was sensitive to catalase, but not to NaClO4 or ouabain. This iodination plateaued after 2h and the apparent Km was 16.5 muM. This process was insensitive to thyrotropin and dibutyryl cyclic AMP. The major products were iodoprotein other then thyroglobulin and iodolipid and the yield of tetraiodothyronine was low. (3) Intracellular iodination from passively diffused iodide, which was not sensitive to inhibitors. Other characteristics of passive intracellular iodination were intermediate between active intracellular iodination and extracellular iodination. The fact that the three processes are inhibited by similar concentrations of methimazole, and their apparent Km values, when corrected for the concentrating effect of iodide trapping, are all of the same order as the Km of purified thyroid peroxidases, suggest that although their locations are different, the enzymic systems involved are identical. These results show that, besides an extracellular site of iodination, dispersed thyroid cells process an intracellular site of iodination with biochemical characteristics of physiological relevance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.