Abstract

Chromogranins are a family of acidic soluble proteins which exhibit widespread distribution in endocrine cells and neurons. Chromogranin A (CGA), the major soluble component of the secretory granules in chromaffin cells of the adrenal medulla, is a single polypeptide chain of 431 residues with an apparent molecular mass of 70-75 kDa and a pI of 4.5-5. In mature bovine chromaffin granules about 50% of the CGA has been processed. In the present paper, the structural features of the proteolytic degradation mechanism have been characterized with regard to the possible function of CGA as a prohormone, as suggested by recent studies. CGA-derived components present in chromaffin granules were subjected to either two-dimensional gel electrophoresis or HPLC and the N-terminal of each fragment was sequenced. Immunoblotting with antisera to specific sequences within the CGA molecule were used to characterize these fragments further at their C-terminal. In addition, a similar approach was performed to characterize CGA-derived fragments released into the extracellular space from directly depolarized bovine cultured chromaffin cells. Our results identified several proteolytic cleavage sites involved in CGA degradation. Intragranular processing occurs at 12 cleavage sites along the peptide chain located in both N- and C-terminal moieties of the protein; a preferential proteolytic attack in the C-terminal part was noted. We found that CGA processing also occurs in the extracellular space after release, generating new shorter fragments. The proteolytic cleavage sites identified in this study were compared with the cleavage points which are thought to be involved in generating CGA fragments with specific biological activity: pancreastatin, chromostatin and N-terminal vasostatin fragments. In addition, a new 12-amino-acid CGA-derived peptide corresponding to the sequence 65-76 was identified in the soluble core of purified chromaffin granules. This short peptide was released, together with catecholamines, after stimulation of cultured chromaffin cells suggesting its presence within the storage complex of chromaffin granules. The specific biological activity of this CGA-derived fragment remains to be determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.