Abstract

Dictyostelium discoideum cells contain cell surface cyclic AMP (cAMP) receptors that bind cAMP as a first messenger and intracellular cAMP receptors that bind cAMP as a second messenger. Prolonged incubation of Dictyostelium cells with cAMP induces a sequential process of phosphorylation, sequestration and down-regulation of the surface receptors. The role of intracellular cAMP in down-regulation of surface receptors was investigated. Down-regulation of receptors does not occur under conditions that specifically inhibit the formation of intracellular cAMP (the drug caffeine or mutant cells lacking adenylate cyclase) or conditions that inhibit the function of intracellular cAMP (mutants lacking protein kinase A activity). Cell-permeable non-hydrolysable cAMP derivatives were used to investigate further the requirement of intracellular cAMP for down-regulation. The Sp isomer of 6-thioethylpurineriboside 3',5'-phosphorothioate (6SEth-cPuMPS) does not bind to the surface receptor, enters the cell and has relative high affinity for protein kinase A. 6SEth-cPuMPS alone has no effect on down-regulation. However, together with an agonist of the surface receptor, the analogue induces down-regulation in caffeine-treated wild-type cells and in mutant cells lacking adenylate cyclase, but not in mutant cells lacking protein kinase A. These results indicate that intracellular cAMP formation and activation of protein kinase A are essential for down-regulation of the surface cAMP receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call