Abstract

We experimentally and numerically investigate the intracavity ionization of a dilute gas target by an ultrashort pulse inside a femtosecond enhancement cavity. Numerical simulations detail how the dynamic ionization of the gas target limits the achievable peak intensity of the evolving intracavity pulse beyond that of linear cavity losses, setting a constraint on the strength of the nonlinear interaction that can be sustained in such optical cavities. Experimental measurements combined with numerical simulations predict ionization levels in a femtosecond enhancement cavity for the first time. We demonstrate how the resonant response of the femtosecond enhancement cavity can itself be used as a sensitive probe of optical nonlinearities at high intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.