Abstract

ObjectivesThis study was designed to test the feasibility of high-resolution phased-array intracardiac imaging. BackgroundIntracardiac echocardiographic imaging of the heart during interventional electrophysiologic (EP) procedures has been limited by inadequate ultrasound penetration and absence of Doppler hemodynamic and flow information produced by rotating mechanical ultrasound elements. MethodsA 10F (3.2 mm) phased-array, variable 5.5 to 10 MHz frequency imaging catheter with a four-way deflectable tip was applied in 24 patients undergoing EP studies. Sixteen prespecified cardiac targets were imaged from a right heart venue. ResultsFifteen patients had no underlying organic heart disease; nine had ischemic, cardiomyopathic, valvular or congenital heart disorders. Longitudinal and short-axis imaging readily disclosed each cardiac valve, support structures and chamber, as well as the pericardium, right and left atrial appendages, the junction of the right atrium and superior vena cava, crista terminalis, tricuspid valve isthmus, coronary sinus orifice, membranous fossa ovalis and pulmonary veins. The average target depth was 8.8 ± 1.5 cm (range 0.5 to 15 cm), with adequate penetration at a 7.5 MHz imaging frequency. Color flow and Doppler utilities clearly characterized transaortic and pulmonic valve and pulmonary vein blood flow, including during low output states. ConclusionsThese first human studies with this technology demonstrate the methods, feasibility and utility of intracardiac phased-array vector and Doppler imaging for long-axis, apex-to-base global cardiac imaging. High resolution of endocardial structures and catheters suggests additional utility for visualizing interventional procedures from the right heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.