Abstract

BackgroundFlexion-Abduction-External-Rotation and Flexion-Adduction-Internal-Rotation tests are used to reproduce pain at the hip during clinical assessment. As pain can be elicited by high intracapsular pressure, no information has been provided regarding intracapsular pressure during these pain provocative tests.MethodsEight hip joints from four cadaveric specimens (78.5 ± 7.9 years) were assessed using intra-osseous tunnels reaching the lateral and acetabular compartments. To simulate synovial liquid, 2.7 ml of liquid were inserted in both compartments using adaptor injectors. Optic pressure transducers were used to measure pressure variations. Pressures were compared between compartments in each test and between tests for each compartment. Both tests were compared with uniplanar movements.FindingsThe Flexion-Adduction-Internal-Rotation test showed a significant difference between pressure measured in the lateral (27.17 ± 42.63 mmHg) and acetabular compartment (−26.80 ± 29.26 mmHg) (P < 0.006). The pressure measured in the lateral compartment during the Flexion-Adduction-Internal-Rotation test (27.17 ± 42.63 mmHg) was significantly higher than in the Flexion-Abduction-External-Rotation test (−8.09 ± 15.09 mmHg) (P < 0.010). The pressure measured in the lateral compartment in the Flexion-Abduction-External-Rotation test was significantly lower than during internal rotation (P = 0.011) and extension (P = 0.006).InterpretationHigh intracapsular pressure is correlated with greater pain at the hip. Clinicians should assess pain with caution during the Flexion-Adduction-Internal-Rotation test as this test showed high intracapsular pressures in the lateral compartment. The Flexion-Abduction-External-Rotation is not influenced by high intra-capsular pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.