Abstract
The corpus callosum (cc) contains nitric oxide (NO)-producing neurons. Because NO is a potent vasodilator, these neurons could translate neuronal signals into vascular responses that can be detected by functional brain imaging. Substance P (SP), one of the most widely expressed peptides in the CNS, also produces vasomotor responses by inducing calcium release from intracellular stores through its preferred neurokinin 1 (NK1) receptor, thus inducing NO production via activation of neuronal NO synthase (nNOS). Single- and double-labeling experiments were performed to establish whether NK1-immunopositive neurons (NK1IP -n) are found in the rat cc and the extent of NK1 colocalization with nNOS. NK1IP -n were seen to constitute a large neuronal population in the cc and had a distribution similar to that of nNOSIP neurons (nNOSIP -n). NK1IP -n were numerous in the lateral cc and gradually decreased in the more medial portions, where they were few or absent. Intracallosal NK1IP -n and their dendritic trees were intensely labeled, allowing classification into four morphological types: bipolar, round, polygonal, and pyramidal. Confocal microscopic examination demonstrated that nearly all NK1IP -n contained nNOS (96.43%) and that 84.59% of nNOSIP -n co-expressed NK1. These data suggest that the majority of intracallosal neurons can release NO as a result of the action of SP. A small proportion of nNOSIP -n does not contain NK1 and is not activated by SP; these neurons may release NO via alternative mechanisms. The possible mechanisms by which intracallosal neurons release NO are also reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.