Abstract

Stress causes symptom exacerbation in functional disorders of the urinary bladder. However, the potential mediators and underlying mechanisms of stress effects on micturition reflex function are unknown. We have characterized PACAP (Adcyap1) and PAC1 receptor (Adcyap1r1) signaling in stress-induced urinary bladder dysfunction in mice. We determined PACAP and PAC1 transcripts and protein expressions in the urinary bladder and lumbosacral dorsal root ganglia (DRG) and spinal cord in repeated variate stress (RVS) or control mouse (handling only) groups. RVS in mice significantly (p≤ 0.01) increased serum corticosterone and urinary bladder NGF content and decreased weight gain. PACAP and PAC1 mRNA and protein were differentially regulated in lower urinary tract tissues with changes observed in lumbosacral DRG and spinal cord but not in urinary bladder. RVS exposure in mice significantly (p≤ 0.01) increased (2.5-fold) voiding frequency as determined using conscious cystometry. Intrabladder administration of the PAC1 receptor antagonist, PACAP(6-38) (300nM), significantly (p≤ 0.01) increased infused volume (1.5-2.7-fold) to elicit a micturition event and increased the intercontraction interval (i.e., decreased voiding frequency) in mice exposed to RVS and in control mice, but changes were smaller in magnitude in control mice. We also evaluated the effect of PAC1 blockade at the level of the urinary bladder on pelvic sensitivity in RVS or control mouse groups using von Frey filament testing. Intrabladder administration of PACAP(6-38) (300nM) significantly (p≤ 0.01) reduced pelvic sensitivity following RVS. PACAP/receptor signaling in the CNS and PNS contributes to increased voiding frequency and pelvic sensitivity following RVS and may represent a potential target for therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.