Abstract

We demonstrate a method to probe cold and ultracold chemistry in a single molecular beam. The approach exploits beam slippage, the velocity difference of different species in the same beam, to establish the relative velocity. Average collision energies of 2.5 mK are achieved but with a spread of 100% or more. However, by implementing a dual-slit chopper that can separately fix the velocities of the two species at the interaction region, we achieve precise control over the relative velocity and narrow its spread. Relative velocities of 7-10 ± 1.1 m/s are achieved with an angular divergence less than 0.25°. In the present study, we observe l-changing collisions occurring between Xe Rydberg atoms and Xe ground state atoms at subKelvin temperatures. We show that in this case the collision energies are tunable between 200 to 450 mK with a root-mean-square deviation of ∼18%. Application of the method to other species and access to much lower energies is straightforward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.