Abstract

Lubricin, a glycoprotein encoded by the proteoglycan 4 (PRG4) gene, is an essential boundary lubricant that reduces friction between articular cartilage surfaces. The loss of lubricin subsequent to joint injury plays a role in the pathogenesis of posttraumatic osteoarthritis. In this study, we describe the development and evaluation of an adeno-associated virus (AAV)-based PRG4 gene therapy intended to restore lubricin in injured joints. The green fluorescent protein (GFP) gene was inserted the PRG4 gene to facilitate tracing the distribution of the transgene product (AAV-PRG4-GFP) in vivo. Transduction efficiency of AAV-PRG4-GFP was evaluated in joint cells, and the conditioned medium containing secreted PRG4-GFP was used for shear loading/friction and viability tests. In vivo transduction of joint tissues following intra-articular injection of AAV-PRG4-GFP was confirmed in the mouse stifle joint in a surgical model of destabilization of the medial meniscus (DMM), and chondroprotective activity was tested in a rabbit anterior cruciate ligament transection (ACLT) model. In vitro studies showed that PRG4-GFP has lubricin-like cartilage-binding and antifriction properties. Significant cytoprotective effects were seen when cartilage was soaked in PRG4-GFP before cyclic shear loading (n = 3). Polymerase chain reaction and confocal microscopy confirmed the presence of PRG4-GFP DNA and protein, respectively, in a mouse DMM (n = 3 per group). In the rabbit ACLT model, AAV-PRG4-GFP gene therapy enhanced lubricin expression (p = 0.001 vs. AAV-GFP: n = 7-14) and protected the cartilage from degeneration (p = 0.014 vs. AAV-GFP: n = 9-10) when treatments were administered immediately postoperation, but efficacy was lost when treatment was delayed for 2 weeks. AAV-PRG4-GFP gene therapy protected cartilage from degeneration in a rabbit ACLT model; however, data from the ACLT model suggest that early intervention is essential for efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.