Abstract
The molecular dynamics of a copolymer composed of methyl methacrylate (MMA) and (2-acetoacetoxy)ethyl methacrylate (AEMA) monomers and the influence on it of intra- to intermolecular cross-links of AEMA units with ethylenediamine (EDA) was studied by combining dielectric relaxation experiments and thermal investigations. The dielectric spectra of the non-cross-linked copolymer show three dynamical processes: a slow relaxation (α) and a faster (β), both dominated by the MMA dynamics, and an even faster secondary relaxation (γ) reflecting the AEMA dynamics. Already for low cross-linking densities, the γ process is very much affected and eventually disappears, increasing the cross-linking density. The secondary β relaxation however was nearly unaffected by cross-linking. The effect of cross-linking on the α relaxation was very pronounced with an important increasing of the glass transition temperature Tg. There was also an increase of the dynamic heterogeneity and the relaxation intensity when increasing the cross-linking density (up to the maximum explored, 9 mol % EDA). The quality of the average time scale and Tg value have similarities in behavior for intra- and intermolecular cross-linking, but clear differences in the dynamic heterogeneities where observed. These differences can be interpreted in connection with the sparse internal structure of the collapsed single chains obtained by intramolecular cross-linking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.