Abstract

As a result of their morphological complexity, large macroalgae show intra-thallus variations in their nutritional composition and secondary metabolite content, which influences the trophic ecology of herbivorous invertebrates, and ultimately their fitness. In this study, we evaluated for the first time the variability in nutritional quality (protein content, carbohydrates, lipids, and total organic matter), secondary metabolites (phlorotannins), and structure (shape and toughness) between blades and stipes of the macroalgae Durvillaea Antarctica. Specifically, we looked at their effect on feeding preference, rate of consumption, absorption efficiency, and growth rate of the amphipod Orchestoidea tuberculata, one of the most abundant organisms on Chilean sandy beaches. Proteins, carbohydrates, total organic matter and phlorotannin contents were significantly higher in blades than in stipes. Preference experiments revealed that the amphipods preferred blades when fresh pieces of blades and stipes were offered at the same time. Similar results were found when artificial food (in which structures of both parts of the alga were standardized) was offered, suggesting that shape and toughness of the two different parts of the alga did not influence preference patterns of O. tuberculata. Absorption efficiency of O. tuberculata was higher on blades compared to stipes. When the amphipods were kept with each of the algal parts separately (i.e. no choice), they consumed a significantly higher amount of stipe, which suggests that O. tuberculata used food quantity to compensate for the lower nutritional quality of stipes. The higher nutritional values of blades compared to stipes appears to explain observed preference patterns by O. tuberculata. Phlorotannin content did not appear to inhibit blade consumption, suggesting that the nutritional quality of the food could be more important than chemical defense in determining food choice in O. tuberculata. Growth did not differ between the amphipods maintained with either blades or stipes (i.e. no choice), which is consistent with the hypothesis of compensatory feeding. To conclude, O. tuberculata can actively select specific parts of an alga and this selection appears to be based on nutritional quality. The capacity for using different feeding strategies allow O. tuberculata, in some cases, to successfully exploit food types with different nutritional qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call