Abstract
Natural killer (NK) cell repertoires are made up of a vast number of phenotypically distinct subsets with different functional properties. The molecular programs involved in maintaining NK cell repertoire diversity under homeostatic conditions remain elusive. Here we show that subset-specific NK cell proliferation kinetics correlate with mTOR activation, and that global repertoire diversity is maintained through a high degree of intra-lineage subset plasticity during IL-15-driven homeostatic proliferation in vitro. High-resolution flow cytometry and single-cell RNA sequencing revealed that slowly cycling sorted KIR+CD56dim NK cells with an induced CD57 phenotype display increased functional potential associated with MHC interactions and DAP12 signaling. In contrast, rapidly cycling cells upregulate NKG2A and display a general loss of functionality associated with a transcriptional increase in RNA-binding metabolic enzymes and cytokine signaling pathways. These results shed new light on the role of intra-lineage plasticity during NK cell homeostasis and suggest that the functional fate of the cell is tightly linked to the acquired phenotype and determined by transcriptional reprogramming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.