Abstract

BackgroundCannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. In anopheline malaria vectors the inter-instar cannibalism between fourth- and first-instar larvae (L4-L1) has been shown in several species, while intra-instar cannibalism remains poorly investigated. In this study we tested the occurrence of intra-instar cannibalism within larvae of second-, third- and fourth-instar (L2, L3 and L4) of Anopheles gambiae (s.s.) and An. stephensi. Experiments were set up under laboratory conditions and the effects of larval density, duration of the contact period among larvae and the presence of an older larva (i.e. a potential cannibal of bigger size) on cannibalism rate were analysed. Cannibalism was assessed by computing the number of missing larvae after 24 and 48 h from the beginning of the experiments and further documented by records with a GoPro videocamera.ResultsIntra-instar cannibalism was observed in all larval instars of both species with higher frequency in An. gambiae (s.s.) than in An. stephensi. In both species the total number of cannibalistic events increased from 0–24 to 0–48 h. The density affected the cannibalism rate, but its effect was related to the larval instar and to the presence of older larvae. Interestingly, the lower cannibalism rate between L4 larvae was observed at the highest density and the cannibalism rate between L3 larvae decreased when one L4 was added.ConclusionsThe present study provides experimental evidence of intra-instar cannibalism in the malaria vectors An. gambiae (s.s.) and An. stephensi and highlights the possible occurrence of complex interactions between all larval instars potentially present in the breeding sites. We hypothesize that the high density and the presence of a potential cannibal of bigger size could affect the readiness to attack conspecifics, resulting into low risk larval behavior and lower cannibalism rate. The understanding of cannibalistic behavior and the factors affecting it is of utmost importance for malaria vectors, as nutrition during larval development can strongly affect the fitness of adult female mosquitoes and ultimately their vector ability.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1850-5) contains supplementary material, which is available to authorized users.

Highlights

  • Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented

  • Different cannibalism rates were observed for the two species as, by considering the overall datasets, more larvae disappeared in An. gambiae (s.s.) (190/919 = 20.7 %) than in An. stephensi (51/925 = 5.5 %) (χ2 = 71.999, df = 1, P = 0.0001) during the 48 h

  • In Anopheles stephensi, in cannibalism experiments between Fourth-instar larvae (L4) and L1 larvae, most the first-instar larvae were consumed during the 48 h of the experiment, in the experimental cups few fourth-instar larvae disappeared as well, which would suggest the possible occurrence of cannibalism among them [25]

Read more

Summary

Introduction

Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. Cannibalism can significantly affect persistence and stability of populations [1,2,3,4,5,6]. Cannibalism has been suggested to increase the ability of population propagules to colonize and persist in new stressful environments by affecting the dispersal, nutritional ability and development time of individuals [3, 14, 15]. In the red flour beetle Tribolium castaneum, cannibalism has been suggested to facilitate colonization of marginal environments and in larvae of the harlequin ladybird Harmonia axyridis, cannibalism was significantly greater in invasive than in native or laboratory populations [14, 15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call