Abstract
Abstract. Predicting within-field crop yield early in the season can help address crop production challenges to improve farmers’ economic return. While yield prediction with remote sensing has been a research aim for years, it is only recently that observations with the suited spatial and temporal resolutions have become accessible to improve crop yield predictions.Here we developed a yield prediction framework that integrates daily high-resolution (3 m) CubeSat imagery into the APSIM crop model. The approach trains a regression model that correlates simulated yield to simulated leaf area index (LAI) from APSIM. That relationship is then employed to determine the optimum date at which the regression best predicts yield from the LAI. Additionally, our approach can forecast crop yield by utilizing a particle filter to assimilate CubeSat-based LAI in the model APSIM to generate yield maps at 3 m several weeks before the optimum regression date. Our method was evaluated for a rainfed site located in the US Corn belt, using a collection of spatially varying yield data. The proposed approach does not need in situ data to rain the regression, with outcomes reporting that even with a single assimilation step, accurate yield predictions were provided up to 21 days before the optimum regression date. The spatial variability of crop yield was reproduced fairly well, with a good correlation against in situ measurements (R2 = 0.73 and RMSE = 1.69), demonstrating that high-resolution yield predictions early in the season have great potential to meet and improve upon digital agricultural goals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.