Abstract

Server storage systems use a large number of disks to achieve high performance, thereby consuming a significant amount of power. In this paper, we propose to significantly reduce the power consumed by such storage systems via intra-disk parallelism, wherein disk drives can exploit parallelism in the I/O request stream. Intra-disk parallelism can facilitate replacing a large disk array with a smaller one, using the minimum number of disk drives needed to satisfy the capacity requirements. We show that the design space of intra-disk parallelism is large and present a taxonomy to formulate specific implementations within this space. Using a set of commercial workloads, we perform a limit study to identify the key performance bottlenecks that arise when we replace a storage array that is tuned to provide high performance with a single high-capacity disk drive. We show that it is possible to match, and even surpass, the performance of a storage array for these workloads by using a single disk drive of sufficient capacity that exploits intra-disk parallelism, while significantly reducing the power consumed by the storage system. We evaluate the performance and power consumption of disk arrays composed of intra-disk parallel drives, and discuss engineering and cost issues related to the implementation and deployment of such disk drives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.