Abstract

Investigation of osteoarthritis (OA) risk alleles suggests that reduced levels of growth and differentiation factor-5 (GDF5) may be a precipitating factor in OA. We hypothesized that intra-articular recombinant human GDF5 (rhGDF5) supplementation to the OA joint may alter disease progression. A rat medial meniscus transection (MMT) joint instability OA model was used. Animals received either one intra-articular injection, or two or three bi-weekly intra-articular injections of either 30μg or 100μg of rhGDF5 beginning on day 21 post surgery after structural pathology had been established. Nine weeks after MMT surgery, joints were processed for histological analysis following staining with toluidine blue. Control groups received intra-articular vehicle injections, comprising a glycine-buffered trehalose solution. OA changes in the joint were evaluated using histopathological end points that were collected by a pathologist who was blinded to treatment. Intra-articular rhGDF5 supplementation reduced cartilage lesions on the medial tibial plateau in a dose-dependent manner when administered therapeutically to intercept OA disease progression. A single 100μg rhGDF5 injection on day 21 slowed disease progression at day 63. A similar effect was achieved with two bi-weekly injections of 30μg. Two bi-weekly injections of 100μg or three bi-weekly injections of 30μg stopped progression of cartilage lesions. Importantly, three biweekly injections of 100μg rhGDF5 stimulated significant cartilage repair. Intra-articular rhGDF5 supplementation can prevent and even reverse OA disease progression in the rat MMT OA model. Collectively, these results support rhGDF5 supplementation as an intra-articular disease modifying OA therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.