Abstract

Cartilage damage is frequent in various joint diseases, mainly manifested by the loss of type II collagen and the degradation of proteoglycans. Diclofenac sodium is a commonly used drug for the treatment of joint diseases, but simple administration is often affected by drug clearance and rapid metabolism. Intra-articular drug delivery is an effective method for local enrichment of high concentration of drugs. However, due to the short half-life of diclofenac sodium, prolonging the stability and duration of the drug can alleviate the disadvantages of direct intra-articular application. Nanospheres for delivering drugs to treat joint diseases could be a remedy for cartilage damage. In addition, excessive production of reactive oxygen species (ROS) by macrophages activated in damaged cartilage would aggravate cartilage damage. Therefore, this study intends to use poly lactic-co-glycolic acid nanospheres to load and deliver diclofenac sodium to inhibit chondrocyte death while regulating the generation of ROS, thereby promoting the treatment of cartilage damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call