Abstract

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease marked by joint destruction and functional impairment. Tumor necrosis factor (TNF) plays a critical role in RA pathogenesis. Although TNF-targeting drugs are clinically effective, their need for frequent and long-term administration often results in poor patient adherence and suboptimal outcomes. This study developed a gene therapy approach using engineered adeno-associated virus (AAV) vectors to deliver an anti-TNF agent directly into the joint cavity of RA animal models. Animals receiving this therapy demonstrated sustained improvement in clinical scores, inflammatory markers, and joint tissue health. Immunofluorescence staining revealed that AAV vectors could transduce various cell types, including T cells, type A synoviocytes, and dendritic cells. Our results indicate that a single administration of this gene therapy provided long-term efficacy. This suggests that AAV-mediated anti-TNF gene therapy can offer prolonged relief from clinical symptoms and reduce inflammatory damage in a mouse model of RA. This innovative approach presents a promising new therapy with significant clinical prospects to treat patients with RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.