Abstract

Polyelectrolyte nanoparticle constructs (NPs) comprising salmon calcitonin (sCT), chitosan (CS), and hyaluronic acid (HA) were previously established as having anti-inflammatory potential when injected via the intra-articular (i.a.) route to a mouse model. We attempted to translate the formulation to a large animal model, the lipopolysaccharide (LPS)-stimulated equine model of joint inflammation. The aim was to manufacture under aseptic conditions to produce sterile pyrogen-free NPs, to confirm physicochemical characteristics, and to test toxicity and efficacy in a pilot study. NP dispersions were successfully formulated using pharmaceutical-grade source materials and were aseptically manufactured under GMP-simulated conditions in a grade A modular aseptic processing workstation. The NP formulation had no detectable pathogen or endotoxin contamination. NPs were then tested versus a lactated Ringer's solution control following single i.a. injections to the radiocarpal joints of two groups of four horses pre-treated with LPS, followed by arthrocentesis at set intervals over 1week. There was no evidence of treatment-related toxicity over the period. While there were no differences between clinical read-outs of the NP and the control, two synovial fluid-derived biomarkers associated with cartilage turnover revealed a beneficial effect of NPs. In conclusion, NPs comprising well-known materials were manufactured for an equine i.a.-injectable pilot study and yielded no NP-attributable toxicity. Evidence of NP-associated benefit at the level of secondary endpoints was detected as a result of decreases in synovial fluid inflammatory biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.