Abstract

Autophagy is a cellular homeostasis mechanism that may have a protective role against osteoarthritis (OA). The present study investigated the therapeutic effect of local administration of rapamycin, a potent activator of autophagy, against OA. To achieve controlled intra-articular administration of rapamycin, gelatin hydrogels incorporating rapamycin-micelles were created and the release profile was evaluated in vitro. The therapeutic effects of gelatin hydrogels incorporating rapamycin-micelles were then tested in a murine OA model. Mice were divided into four groups: Group 1, gelatin hydrogels alone; Group 2, single injection of 1 μg rapamycin; and Groups 3 and 4, gelatin hydrogels incorporating 100 ng or 1 μg rapamycin-micelles, respectively. Immunohistochemical analysis revealed that autophagic marker-positive chondrocytes were increased in the rapamycin-treated mice at 10 weeks after surgery. The histologic score was better in Groups 3 and 4 than in Groups 1 and 2, and Group 2 had a better score than Group 1. Delayed OA progression was maintained even at 16 weeks after surgery in Group 4. Microarray and real-time polymerase chain reaction analysis indicated that OA mediator genes were downregulated in the rapamycin-treated mice. Our novel system for intra-articular administration of rapamycin could be a novel therapeutic approach for treating patients with OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call