Abstract
In this study, we intended to investigate the responses of rhizospheric bacterial communities of Populus cathayana to excess Zn under different planting patterns. The results suggested that intersexual and intrasexual interactions strongly affect plant growth and Zn extraction in both sexes, as well as rhizosphere-associated bacterial community structures. Females had a higher capacity of Zn accumulation and translocation than males under all planting patterns. Males had lower Zn accumulation and translocation under intersexual than under intrasexual interaction; the contrary was true for females. Females harbored abundant Streptomyces and Nocardioides in their rhizosphere, similarly to males under intersexual interaction, but differed from single-sex males under excess Zn. Conversely, intersexual interaction increased the abundance of key taxa Actinomycetales and Betaproteobacteria in both sexes exposed to excess Zn. Males improved the female rhizospheric microenvironment by increasing the abundance of some key tolerance taxa of Chloroflexi, Proteobacteria and Actinobacteria in both sexes under excess Zn in intersexual interaction. These results indicated that the sex of neighboring plants affected sexual differences in the choice of specific bacterial colonizations for phytoextraction and tolerance to Zn-contaminated soils, which might regulate the spatial segregation and phytoremediation potential of P. cathayana females and males under heavy metal contaminated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.