Abstract

The zero field cooled (ZFC) and field cooled (FC) low-field magnetic moment m of a dense frozen ferrofluid containing Fe55Co45 particles of size 4.6nm in hexane exhibits irreversibility at temperatures T < T b≈ 30 K. FC in μ 0 H ≤ 1 T gives rise to shifted minor hysteresis loops below T b. At T c≈ 10 K, sharp peaks of m ZFC and of the ac susceptibility χ ′, a kink of the thermoremanent magnetic moment m TRM, a sizeable reduction of the coercive field H c, and the appearance of a spontaneous moment m SFM indicate a phase transition with near mean-field critical behaviour of both m SFM and χ ′ . These features are explained within a core-shell model of nanoparticles, whose strongly disordered shells gradually become blocked below T b, while their soft ferromagnetic cores couple dipolarly and become superferromagnetic (SFM) below T c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.