Abstract

Mechanisms of carbazole photoluminescence quenching by the free and chemically bound nitroxyl radicals in the model bound system “carbazole (CBZ)—imidazolidine nitroxyl radical R•” were investigated and the photophysical properties of the system were studied and compared with those of free CBZ and R• in solution. The quantum yield and lifetime of fluorescence from the local singlet excited state of the carbazole moiety in the bound CBZ—R• system is three orders of magnitude lower than in free CBZ. The lifetime of the local triplet excited state of the carbazole moiety in the bound system is shorter than 50 ns. The rate constants for intermolecular quenching of the singlet and triplet excited states of free CBZ by R• in acetonitrile were found to be (1.4±0.1)·1010 and (1.5±0.2)·109 L mol−1 s−1, respectively. The most plausible mechanisms of both free and covalently bound carbazole luminescence quenching by nitroxyl radicals are exchange energy transfer and acceleration of internal conversion due to electron exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.