Abstract

In stimulus matching tasks requiring discrimination of two unilaterally or bilaterally presented stimuli (Dimond paradigm), a well established intrahemispheric processing bottleneck model predicts that an increase in task difficulty as measured by reaction time should provide an advantage to bilateral stimulations. The purpose of the current investigation was to review the entire relevant literature on the Dimond paradigm and identify the experimental variables which reliably yield such effects. Forty nine experimental effects compatible with the “intrahemispheric processing bottleneck” model and 26 contrary effects were found. Manipulation of the complexity of the stimulus matching criterion significantly produced intrahemispheric bottleneck effects. This effect was also significantly greater when non-target stimuli required heavier processing. These two findings support the intrahemispheric bottleneck model: computationally complex tasks seem to overload a hemisphere׳s processing capacity, an effect seen in the unilateral presentation conditions. However, manipulating the similarity of target stimuli produced contrary effects. Contrary effects were also obtained more readily when two physical matching tasks were compared. These two latter effects may best be explained as low level visual-perceptual limitations of interhemispheric transfer or integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.