Abstract

A two-compartment model of diffusion in white matter, which accounts for intra- and extra-axonal spaces, is associated with two plausible mathematical scenarios: either the intra-axonal axial diffusivity Da,‖ is higher than the extra-axonal De,‖ (Branch 1), or the opposite, i.e. Da,‖ < De,‖ (Branch 2). This duality calls for an independent validation of compartment axial diffusivities, to determine which of the two cases holds. The aim of the present study was to use an intracerebroventricular injection of a gadolinium-based contrast agent to selectively reduce the extracellular water signal in the rat brain, and compare diffusion metrics in the genu of the corpus callosum before and after gadolinium infusion. The diffusion metrics considered were diffusion and kurtosis tensor metrics, as well as compartment-specific estimates of the WMTI-Watson two-compartment model. A strong decrease in genu T1 and T2 relaxation times post-Gd was observed (p < 0.001), as well as an increase of 48% in radial kurtosis (p < 0.05), which implies that the relative fraction of extracellular water signal was selectively decreased. This was further supported by a significant increase in intra-axonal water fraction as estimated from the two-compartment model, for both branches (p < 0.01 for Branch 1, p < 0.05 for Branch 2). However, pre-Gd estimates of axon dispersion in Branch 1 agreed better with literature than those of Branch 2. Furthermore, comparison of post-Gd changes in diffusivity and dispersion between data and simulations further supported Branch 1 as the biologically plausible solution, i.e. Da,‖ > De,‖. This result is fully consistent with other recent measurements of compartment axial diffusivities that used entirely different approaches, such as diffusion tensor encoding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.