Abstract

Supramaximal stimulation of the pancreas with the CCK analog caerulein causes acute edematous pancreatitis. In this model, active trypsin can be detected in the pancreas shortly after the start of supramaximal stimulation. Incubation of pancreatic acini in vitro with a supramaximally stimulating caerulein concentration also results in rapid activation of trypsinogen. In the current study, we have used the techniques of subcellular fractionation and both light and electron microscopy immunolocalization to identify the site of trypsinogen activation and the subsequent fate of trypsin during caerulein-induced pancreatitis. We report that trypsin activity and trypsinogen-activation peptide (TAP), which is released on activation of trypsinogen, are first detectable in a heavy subcellular fraction. This fraction is enriched in digestive enzyme zymogens and lysosomal hydrolases. Subsequent to trypsinogen activation, both trypsin activity and TAP move to a soluble compartment. Immunolocalization studies indicate that trypsinogen activation occurs in cytoplasmic vacuoles that contain the lysosomal hydrolase cathepsin B. These observations suggest that, during the early stages of pancreatitis, trypsinogen is activated in subcellular organelles containing colocalized digestive enzyme zymogens and lysosomal hydrolases and that, subsequent to its activation, trypsin is released into the cytosol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.