Abstract
To understand a speaker's turn of a conversation, one needs to segment it into intonational phrases, clean up any speech repairs that might have occurred, and identify discourse markers. In this paper, we argue that these problems must be resolved together, and that they must be resolved early in the processing stream. We put forward a statistical language model that resolves these problem, does POS tagging, and can be used as the language model of a speech recognizer. We find that by accounting for the interactions between these tasks that the performance on each task improves, as does POS tagging and perplexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.