Abstract
The conformation of Physarum mtDNA is currently thought to be circular. The inheritance of its mtDNA depends on the multiallelic mating type loci, matA. In a cross with ordinary matA combinations, the strain that has the higher matA status transmits its mtDNA to the progeny (uniparental inheritance). The mF plasmid promotes the fusion of mitochondria in the zygote and during sporulation. When it exists in a strain with a lower status matA, the mF plasmid overcomes the force of uniparental inheritance and is preferentially transmitted to the progeny via mitochondrial fusion. Moreover, the conformation of mtDNA is changed from circular to linear by recombination with the mF plasmid. Since biparental inheritance usually occurs in a cross involving a combination of matA1 and matA15, two types of inheritance of Physarum mtDNA exist. Considering the existence of the mF plasmid, there are four patterns of cytoplasmic inheritance in P. polycephalum: 1) uniparental inheritance of mtDNA, 2) uniparental inheritance of mtDNA and preferential transmission of the mF plasmid, 3) biparental inheritance of mtDNA, and 4) biparental inheritance of mtDNA and the mF plasmid. This article describes the events involved in each pattern. Finally, we discuss a hypothetical mechanism for mitochondrial fusion. The essential protein may be the ORF640 protein encoded in the mF plasmid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.