Abstract
Activation of the nuclear receptor/transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma), is a newly defined target for limiting vascular pathologies. PPARgamma is expressed in human and animal models of vascular disease, with particularly high levels being present in the cells of the neointimal microenvironment. In the present study, we show that intimal smooth muscle cells in vitro contain higher amounts of functional PPARgamma than medial smooth muscle cells. The PPARgamma ligand rosiglitazone more potently induced CD36 expression at low concentrations, and cell death by apoptosis at higher concentrations in intimal compared with medial smooth muscle cells. Intimal smooth muscle cells also contained high levels of cyclooxygenase-2 protein, and released a more diverse and larger amount of eicosanoids on arachidonic acid stimulation. Furthermore, when exogenous arachidonic acid was added, PPAR reporter gene activation was induced in a cyclooxygenase inhibitor-sensitive manner, an effect that correlated with an increase in CD36 expression. In summary, intimal smooth muscle cells contain functionally higher levels of PPARgamma, PPARgamma ligands have high- and low-potency targets in vascular smooth muscle cells, and cyclooxygenase can serve as a source of potential endogenous PPAR ligands. Intimal vascular smooth muscle cells therefore represent a potentially important target for the antiproliferative, and antiatherosclerotic actions of PPARgamma ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.