Abstract

The crystallization speed (v) of the amorphous (InTe)x(GeTe) (x=0.1, 0.3, and 0.5) films and their thermal, optical, and electrical behaviors were investigated by using a nanopulse scanner (wavelength=658 nm, laser beam diameter <2 μm), x-ray diffraction, a four-point probe, and a UV-vis-IR spectrophotometer. These results were compared to the results for a Ge2Sb2Te5 (GST) film, which was comprehensively utilized for phase-change random access memory (PRAM). Both the v—value and the thermal stability of the (InTe)0.1(GeTe) and (InTe)0.3(GeTe) films were enhanced in comparison to the GST film. Contrarily, the v—value of the (InTe)0.5(GeTe) film was so drastically deteriorated that it could not be quantitatively evaluated. This deterioration occurred because the amorphous (InTe)0.5(GeTe) film had relatively high reflectance, resulting in the absorption being too low to cause the crystallization. Conclusively, proper compositional (InTe)x(GeTe) films (e.g., x<0.3) could be good candidates for PRAM applicatio...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.