Abstract

We examined the relationship between the intestine length and the amount of plant material in the diet of 21 species of fish from forest streams in Panama. Alimentary tract analyses supplemented by literature reports showed that four loricariid catfish species and one poeciliid were specialized herbivores consuming almost exclusively periphyton and detritus. Four species, including one erythrinid, one characid, one trichomyctycterid and one eleotrid, were carnivores consuming almost entirely food of animal origin. Twelve species, including five characids, one lebiasinid, two pimelodelids, three cichlids and one poeciliid, were omnivores consuming food of both plant and animal origin, but the average proportion of food of plant origin (detritus and algae plus higher plant parts) varied from 4–60%. Most omnivores increased plant food consumption with increasing size. Because intestine length increases allometrically with body size and the pattern of increase differs considerably among species and is influenced by length:mass relationships, we compared species at the same size and took both length and mass into account. At a given size, intestine lengths of herbivores were longer than those of omnivores, and these were longer than those of carnivores. Differences in intestine length among the dietary categories were greater at larger body sizes and when the common size was defined by body mass than when it was defined by body length. There was no trend for the average proportion of plant material consumed to be related to intestine length among the omnivores, when confounding effects of body mass were taken into account. The slopes of the allometric equations relating log10 intestine length to log10 body size for herbivores tended to be higher than for omnivores and higher for omnivores than for carnivores, but both herbivores and omnivores showed extensive variation and overlap with the other dietary categories. Among the omnivores, there was no trend for slopes to be steeper for species consuming more plant material on average or for species showing larger ontogenetic increases in plant consumption. These results permit increased precision in describing diet-intestine length relationships, but indicate that the widely held belief that intestine length reflects diet in fishes should only be applied to broad dietary categories and not to finer divisions among omnivores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call