Abstract

1. Hesperetin (HDND) possesses extensive bioactivities, however, its poor solubility and low bioavailability limit its application. HDND-7, a derivative of HDND, has better solubility and high bioavailability. In this study, we investigated the intestinal absorption mechanisms of HDND-7.2. MDCK cells were used to examine the transport mechanisms of HDND-7 in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of HDND-7. The concentration of HDND-7 was determined by HPLC.3. In MDCK cells, HDND-7 was effectively absorbed in a concentration-dependent manner in both directions. Moreover, HDND-7 showed pH-dependent and TEER-independent transport in both directions. The transport of HDND-7 was significantly reduced at 4 °C or in the presence of NaN3. Furthermore, the efflux of HDND-7 was apparently reduced in the presence of MRP2 inhibitors MK-571 or probenecid. However, P-gp inhibitor verapamil had no effect on the transport of HDND-7. The in situ intestinal perfusion study indicated HDND-7 was well-absorbed in four intestinal segments. Furthermore, MRP2 inhibitors may slightly increase the absorption of HDND-7 in jejunum.4. In summary, all results indicated that HDND-7 might be absorbed mainly by passive diffusion via transcellular pathway, MRP2 but P-gp may participate in the efflux of HDND-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.